Equiatomic Compounds of the Transition and Lanthanide Elements with Rh, Ir, Ni and Pt

BY A. E. DWIGHT, R. A. CONNER, JR. AND J. W. DOWNEY

Argonne National Laboratory, Argonne, Illinois, U.S.A.

(Received 2 March 1964 and in revised form 15 June 1964)

Crystal structures and lattice parameters are reported for a number of new intermetallic compounds. Representatives have been found of the orthorhombic B19, B_f and B27 and the cubic B2 structures.

Introduction

A continuing study is under way on the alloy chemistry of the transition elements. In the course of this study a number of new intermetallic compounds have been discovered. It is the purpose of the present paper to report crystal structure data on equiatomic compounds between an element of the Sc (including the lanthanides), Ti, V or Cr group and an element of the Co or Ni group of the Periodic Table.

Experimental

Alloys were made by arc melting on a water-cooled copper hearth under an argon atmosphere. The weight loss during melting varied, but even for the most difficult alloy, TmIr, it was less than 1%. Crystal bar titanium, zirconium and hafnium were used. Rare earth elements were 99.9% pure, as also were the nickel, rhodium, platinum and iridium. The arc-melted buttons were homogenized in evacuated capsules at temperatures appropriately below their melting points. Powder specimens for X-ray diffraction were then prepared and heat treated briefly at the same temperature of homogenization. For the rhodium alloys only, a second set of powder specimens was slowly cooled from 905 °C to 600 °C, held at 600 ° for 24 hours, then slowly cooled to room temperature. Metallographic specimens were examined for evidence of segregation or liquation.

X-ray powder photographs were taken with Cr $K\alpha$ or Cu $K\alpha$ radiation and a Straumanis-type Debye-Scherrer powder camera (114.6 mm diameter). For patterns showing a b.c. cubic structure, the lattice parameters were obtained by the Nelson-Riley extrapolation method. For patterns showing an orthorhombic structure, indices were obtained by use of the Battelle Indexing Charts (Bell & Austin, no date). Lattice parameters were obtained from the IBM 704 computer by the method described by Mueller & Heaton (1961). The computer was also used to calculate *d* spacings (for comparison with observed *d* spacings) and to calculate F^2 . Intensity calculations were made, by means of the relation $I \sim (F^2)$ (Lp factor) (multiplicity), to verify the assignment of indices.

Results and discussion

The B19 structure was found in the equiatomic TiPd and TiPt compounds. TiPt was isolated but not identified by Nishimura & Hiramatsu (1957). Their work showed the compound to be formed by an open maximum transformation at 1830 °C. The B19 structure reported by Schubert, Frank, Gohle, Maldonado, Meissner, Rama & Rossteutscher (1963) in VPt and MoPt is confirmed, as is also the B19 structure in NbPt (Giessen & Grant, 1964). Lattice parameters and probable errors of these compounds are given in Table 1; d spacings and intensities of TiPt are given in Table 2.

In the B19 structure the atomic positional parameters x and y are fixed at $\frac{1}{4}$ and $\frac{1}{2}$ for Ti and $\frac{1}{4}$ and 0 for Pt. The z positional parameters vary, although the difference between the two z parameters is fixed at 0.50 by the geometry of the unit cell (Steeple, 1952). Intensities for TiPt were calculated with three sets of z positional parameters: 0.16 and 0.66, 0.18 and 0.68, 0.20 and 0.70. The best agreement with observed intensities was obtained with z=0.18 for Ti and z=0.68 for Pt, values which are close to those reported by Steeple (1952) for the B19 structure in MgCd: z=0.177 for Mg and z=0.682 for Cd. Only two other examples of the B19 structure have been reported, *i.e.* AuCd and TiAu (Pearson, 1958).

The B_f (CrB-type) structure was found in fourteen compounds, which are listed in Table 1 with their lattice parameters. We confirm the existence of a B_f structure in CeNi, as reported by Tinney & Rosenzweig (1961). Our results for GdNi disagree with those of earlier workers. Novy, Vickery & Kleber (1961) reported GdNi to be orthorhombic, from single crystal data, with $a_0 = 3.8$, $b_0 = 5.2$ and $c_0 = 4.2$ Å. If the b_o value were doubled the lattice parameters by Novy et al. would be in fair agreement with those obtained in the present investigation. In contrast, Baenziger & Moriarty (1961) reported GdNi to have a B27 (FeB-type) structure, with $a_0 = 5.428$, $b_0 = 4.353$ and $c_0 = 6.931$ Å. To support the B_f structure which we find for GdNi, calculated and observed d spacings and intensities are given in Table 3. In the B_f structure, the atomic positional parameters x and z are respectively 0 and 0.25 for both Gd and Ni. Intensity cal-

Table 1. Lattice parameters of equilatomic compounds	Table	1.	Lattice	parameters	of	equiatomic	compounds
--	-------	----	---------	------------	----	------------	-----------

AB	Type	an	bo	Co	Metallographic observations
T;D+	- J F - B10	4.592 ± 0.001	2.761 ± 0.001	4.838 ± 0.001	single phase
Tipa	$\frac{D19}{P10}$	4.56 ± 0.01	2.81 ± 0.01	4.89 ± 0.01	1 % second phase
VDt	<i>B</i> 10	4.00 ± 0.001	2.692 ± 0.001	4.770 ± 0.001	single phase
$VD_{t}(1)$	B19 B10	4.42	2.69	4.76	omgre pridee
	D19 D10	4.42 ± 0.01	2.05 2.78 ± 0.01	4.98 ± 0.01	2 % second phase
NUFL NLD+(2)	D19 D10	4.611	2.780	4.983	
NOPU-	D19 D10	4.011 4.475 ± 0.001	$2,729 \pm 0.001$	4.914 + 0.001	single phase
Mort Mort	D17 D10	4.475 ± 0.001	2.72	4·89	single phase
MOPUT	D19	4.4/	2.74	4 07	
ZrPt	B_f	3.409 ± 0.001	10.315 ± 0.001	4·277 ± 0·001	6 % second phase
HfPt	B_f	3.345 ± 0.001	10.269 ± 0.001	4.288 ± 0.001	1 % second phase
LaNi	B_f	3.907 ± 0.001	10·810 <u>+</u> 0·001	4·396 <u>+</u> 0·001	2 % second phase
CeNi	B_f	3.788 ± 0.001	10.556 ± 0.001	4.366 ± 0.001	2 % second phase
CeNi ⁽³⁾	B_f	3.77 ± 0.01	10.46 ± 0.02	4.37 ± 0.01	
PrNi	B_f	3.816 ± 0.001	10.503 ± 0.001	4.354 ± 0.001	2 % second phase
NdNi	B_f	3·803 <u>+</u> 0·001	10.461 ± 0.001	4·339 <u>+</u> 0·001	2 % second phase
SmNi	B_f	3·776±0·001	10.358 ± 0.001	4.291 ± 0.001	1 % second phase
GdNi	B_f	3·766 <u>+</u> 0·001	10.316 ± 0.001	4.244 ± 0.001	1 % second phase
LaRh	B_f	3.986 ± 0.001	11·144 <u>+</u> 0·001	4.245 ± 0.001	1 % second phase
CeRh	B_f	3.852 ± 0.001	10.986 ± 0.001	4.152 ± 0.001	5 % second phase
PrRh	B_f	3.905 ± 0.001	10.910 ± 0.001	4.210 ± 0.001	5 % second phase
NdRh	B_f	3.890 ± 0.002	10.839 ± 0.007	4.247 ± 0.004	5 % second phase
LaPt	B_f	3.974 ± 0.001	11.037 ± 0.001	4.558 ± 0.001	single phase
CePt	B_f	3.921 ± 0.001	10.920 ± 0.001	4.524 ± 0.001	single phase
DvNi	B27	7.043 ± 0.001	4.164 ± 0.001	5·451 ± 0·001	1 % second phase
DyNi ⁽⁴⁾	B27	6.895 ± 0.002	4.319 ± 0.002	5.353 ± 0.004	
HoNi	B27	7.022 ± 0.001	4.140 ± 0.001	5.435 ± 0.001	single phase
ErNi	B27	6.991 ± 0.001	4.114 ± 0.001	5.418 ± 0.001	1 % second phase
TmNi	B27	6.959 ± 0.001	4.099 ± 0.001	5.398 ± 0.001	1 % second phase
LuNi	B27	6.912 ± 0.001	4.073 ± 0.001	5.366 ± 0.001	10 % second phase
YNi	B 27	7.151 ± 0.001	4.124 ± 0.001	5.513 ± 0.001	1 % second phase
YNi ⁽⁵⁾	B27	7.12 ± 0.02	4.10 ± 0.02	5.51 ± 0.02	
YPt	B27	7.010 ± 0.001	4.471 ± 0.001	5.552 ± 0.001	15 % second phase
PrPt	B27	7.294 ± 0.001	4.560 ± 0.001	5·698 ± 0·001	15 % second phase
NdPt	B27	7.256 ± 0.001	4.551 ± 0.001	5.675 ± 0.001	10 % second phase
SmPt	B27	7.152 ± 0.001	4.525 ± 0.001	5.626 ± 0.001	single phase
GdPt	B27	7.088 ± 0.001	4.502 ± 0.001	5·590±0·001	5 % second phase
GdPt ⁽⁴⁾	B27	7.164 ± 0.003	4.458 ± 0.003	5.574 ± 0.005	
TbPt	B27	7.018 ± 0.001	4.494 ± 0.001	5·561 ± 0·001	5 % second phase
DyPt	B27	6·983 ± 0·001	4.478 ± 0.001	5.544 ± 0.001	15 % second phase
DyPt ⁽⁴⁾	B27	7·118 ± 0·009	4.453 ± 0.013	5.466 ± 0.001	
HoPt	B27	6·951 ± 0·001	4.470 ± 0.001	5.532 ± 0.001	5 % second phase
ErPt	B27	6.904 ± 0.001	4.453 ± 0.001	5.512 ± 0.001	5 % second phase
TmPt	B27	6·855 ± 0·001	4·446 <u>+</u> 0·001	5.496 ± 0.001	20 % second phase
LuPt	B27	6.810 ± 0.001	4·417 <u>+</u> 0·001	5.479 ± 0.001	5% second phase
ScRh	B2	3.204 ± 0.001			5 % second phase
ScRh ⁽⁶⁾	$\overline{B2}$	3.206 ± 0.001			
*YRh	$\overline{B2}$	3.407 ± 0.002			5 % second phase
*SmRh	B2	3.464 ± 0.002			5% second phase
*GdRh	B2	3.440 ± 0.002			3 phase
*TbRh	B2	3.417 + 0.001			1 % second phase
*DvRh	B2	3.403 + 0.002			single phase
*HoRh	$\overline{B2}$	3.388 ± 0.002			2 % second phase
*FrRh	B 2	3.372 ± 0.002			1 % second phase
TmPh	B2	3.358 ± 0.002			2% second phase
LuRb	B2 B2	3.332 ± 0.002			single phase
*Holr	B2 R2	3.383 ± 0.002			20 % second phase
*FrIr	B2 B2	3.367 ± 0.002			40 % second phase
*TmIr	B2 B2	3.353 ± 0.002			10 % second phase
*I 11Ir	B2 B2	3.332 ± 0.002			10 % second phase
Lun	52	5 552 <u>-</u> 0 002			

Schubert et. al. (1963).
Giessen & Grant (1963).
Tinney & Rosenzweig (1961).
Baenziger & Moriarty (1961).
Beaudry & Daane (1960).
Compton (1958).

* Superlattice lines not detected.

Table 2.	Calculated and observed d spacings
	and intensities for TiPt
**7 1	

wav	ciengin of rau	anon: Cr	$\alpha_1 = 2.2090$	2 A
hkl	d_c	do	I_c	I.
001	4.838		182	עעע
101	3.329	3.31	655	ms
010	2.76	2.75	241	ms
002	2.42	2.41	188	ms
011	2.40	2.40	165	w
200	2.294	2.29	395	5
102	2.14	2.135	380	ms
111	2.122	2.12	1000	vs
201	2.073	2.07	38	w
012	1.819	1.82	58	w
210	1.765	1.763	132	т
202	1.665	1.665	128	ms
211	1.658	1.66	114	т
003	1.613	1.61	53	т
103	1.521	_	6	_
301	1.459	1.459	83	m
212	1.425	1.425	84	т
013	1.392	1.392	253	ms
020	1.381	1.380	138	ms
113	1.332	1.330	36	w
021	1.327		21	-
203	1.320	1.320	110	ms
302	1.293	1.293	190	ms
311	1.290	1.290	523	vs
121	1.275	1.275	215	S
004	1.210		8	
022	1.199	1.199	292	т
213	1.190	1.19	1017	vs
220	1.183	1.183	562	vs
312	1.171	1.170	293	vs
104	1.170 ∫	11/0	642 ∫	73
122	1.160	1.16	903	ms

culations were made with y=0.135 for Gd and y=0.425 for Ni. Agreement with observed intensities was only fair. A second set of calculations with y=0.135 for Gd and y=0.435 for Ni gave much better agreement. The calculated intensities in Table 3 are based on the latter set of positional parameters.

Table 3. Calculated and observed d spacings and intensities for GdNi Wavelength of radiation: Cr $K\alpha_1 = 2.28962$ Å

	-		-	
hkl	dc	do	Ic	Io
020	5.158		44	_
110	3.537	3.523	105	vw
021	3.277	3.273	515	ms
111	2 ·717	2.712	1000	vs
040	2.579	2.574	265	m
130	2.539	2.535	471	ms
041	2.204	2.201	137	m
131	2.179	2.178	549	5
002	2.122	2.118	283	ms
022	1.962		4	—
200	1.883	1.882	194	w
112	1.820	1.82	36	vw
150	1.809	—	15	—
220	1.769	_	3	—
060	1.719		<1	—
151	1.664	1.665	89	w
042	1.639	1.639	138	m
221	1·633)	1.620	142 լ	мс
132	1.628 ∫	1.029	255 🐧	ms
061	1.594	1.593	196	m
240	1.521	1.520	131	w

	Tal	ble 3 (cont.)	
hkl	d_c	do	Ic	Io
241	1.432	1.431	98	w
202	1.408	1.408	239	ms
152	1.377		20	
170	1.372	1.372	215	ms
023	1.364	1.365	67	vw
222	1.359	_	5	—
062	1.336	1.336	1	vw
113	1.313	1.313	229	ms
171	1.306	—	55	_
080	1.290	—	29	_
260	1.270		1	
310	1.246	—	17	
043	1.240	1.241	69	w
242	1.236	1.236	359)	c
133	1.236 ∫	1-230	305 ∫	3
081	1.234	—	54	
261	1.216	1.216	189	т
311	1.196	1.196	378	w
330	1.179	1.179	247	w
172	1.152	1.152	1756	S

The equiatomic compound ZrPt was reported by Kendall, Hays & Swift (1961) to be formed at 2100 °C by an open maximum reaction. Kendall *et al.* did not identify the crystal structure of ZrPt, but did present a diffractometer tracing which appears to show the same *d* spacings and intensities that we observe.

The B27 (FeB-type) structure was found in many compounds of nickel and platinum, but not of rhodium. Our data for seventeen B27 compounds are given in Table 1. YNi was reported earlier by Beaudry & Daane (1960) to be orthorhombic, mmm Laue symmetry, with the lattice parameters given in Table 1. Our values for YNi agree closely, although we have chosen different crystallographic axes.

GdPt, DyPt and DyNi were reported as B27 structures by Baenziger & Moriarty (1961). We confirm the crystal structure given by Baenziger & Moriarty. Their lattice parameters as well as ours are given in Table 1. To support our determination of the B27structure, intensities and *d* spacings for LuNi are given in Table 4.

Table 4.	Calculate	d and	observe	ed d	spacings
	and in	tensiti	es for]	LuN	li
Wave	length of r	diation	$\mathbf{n} \cdot \mathbf{Cr} \mathbf{K}$	$\alpha_1 =$	2.28962 Å

marc.	length of faul	ation. Or h	ui - 2 20702	
hkl	d_c	do	I_c	Io
101	4.239	4.236	5	vw
200	3.456	3.452	156	w
011	3.244	3.242	474	ms
111	2.937	2.935	770	S
201	2.905	2.902	406	ms
002	2.683	<u> </u>	77	
210	2.635	2.636	901	S
102	2.501	2.501	894	S
211	2.365	2.367	1000	vs
112	2.131	2.131	576	ms
202	2.119	—	1	
301	2.117	2.121	299	m
020	2.037	2.037	456	m
212	1.880	1.970	41)	
311	1.878	1.9/2	95	w
121	1.836		2	

		· ·	·	
hkl	d_c	do	Ic	Io
220	1.755	1.754	48	vw
302	1.748		4	_
103	1.732	1.734	<1	vvw
400	1.728	1.724	2	vvw
221	1.668	1.668	109	т
401	1.645	1.646	290	т
013	1.638		30	
022	1.622		35	_
312	1.606	1.605	257	ms
113	1.594	1.594	311	ms
410	1.591	1.590	133	m
203	1.589		18	
122	1.579	1.580	492	ms
411	1.525	1.524	2	vvw
213	1.480	1.480	63	w
222	1.468		2	—
321	1.468	1.468	261	ms
402	1.453	1.452	<1	vw
303	1.413	1.413	300	ms
412	1.368	-	10	_
004	1.342	1.341	177	w
501	1.339	1 225	65 J	
313	1.335	1.335	152	w
322	1.320		/	
123	1.319		1	
420	1.317		62)	
031	1.316	1.316	15	w
131	1.293	1.293	154	т
421	1.280	1.279	630	ms
511	1.271	1.272	136	m
230	1.264	1.264	251	m
114	1.253	1 252	101)	
223	1.253	1.253	46	w
204	1.251	_	50 Í	
403	1.243	1.242	85	т
231	1.230	1.230	453	ms
502	1.229	—	8	
214	1.195	1.195	436	S
132	1.193	1.193	149	ms
413	1.188	1.188	5	vw
422	1.183		16	
512	1.176	1.176	1043	S
323	1.161	1.101	488	ms
304	1.129	1 152	<1	
000	1.1.57	1.1.52	.349	w

Table 4 (cont.)

In the B27 structure, the atomic positional parameter y is fixed at 0.250 for both Lu and Ni. The atomic positional parameters x and z for Lu are assumed to be respectively 0.185 and 0.144. For Ni the x and z parameters are assumed to be 0.040 and 0.653. The good agreement between calculated and observed intensities indicates that the assumed values are not greatly in error.

The structure of TbNi could not be determined. An intensive effort was made to index powder patterns of a series of alloys ranging from $Tb_{54}Ni_{46}$ to $Tb_{48}Ni_{52}$. Metallographic examination showed that $Tb_{51}Ni_{49}$ was the closest to being single-phase, and that a TbNi compound does exist. The diffraction pattern is more complex than either of the neighboring phases GdNi (B_f) or DyNi (B27). Two ternary alloys were investigated, GdTbNi₂ and DyTbNi₂. The former was indexed as B_f , the latter as B27. Thus, our data indicate that Tb will partially substitute for Gd in GdNi and for Dy in DyNi, but that TbNi alone has some unknown crystal structure.

A b.c. cubic structure was found in equiatomic compounds in which the A partner was Sc, Y, Sm, Gd, Tb, Dy, Ho, Er, Tm or Lu, and the B partner was Rh. Equiatomic compounds of Ir with Ho, Er, Tm or Lu also have a b.c. cubic structure. Superlattice lines of the CsCl type were identified in the diffraction patterns of ScRh, TmRh and LuRh. It seems likely that the other b.c. cubic compounds listed in Table 1 also have the CsCl-type structure. This belief is supported by the observation that ScRh (Compton, 1958) and ScIr (Aldred, 1962) are known to be CsCl-type structures. Lattice parameters are given in Table 1. Earlier work by the present authors (Nevitt, 1963) gave slightly different values for ErRh and LuRh. New alloys were used in the present work. Differences in composition may account for the discrepancies. Calculated and observed d spacings and intensities are given in Table 5 for HoIr.

Table 5	5.	Observed	and	calculated	values	of	d	spacings
		and	d int	ensities of I	HoIr			

Wavelength of radiation: Cu $K\alpha_1 = 1.54050$ Å

hkl	do	d_c	Io	I _c
100	_	3.381		< 1
110	2.38	2.391	vs	1000
111	_	1.952		< 1
200	1.69	1.691	т	178
210		1.512		< 3
211	1.38	1.380	S	735
220	1.195	1.196	m	112
300]		∫ 1·127		< 1
221	_	1.127		1
310	1.069	`1·069	ms	166
311	—	1.019		2
222	0.977	0.976	т	50
320	—	0.938		1
321	0.904	0.904	5	336
400	0.845	0.845	w	52
410		∫ 0.820		2
322		0.820		4
411	0.707	(0.797)		671
330	0.191	∫ 0 ∙797 }	VS	168
331		`0·776 ´		4

The authors wish to thank Dr. M. V. Nevitt for helpful discussions. Work was performed under the auspices of the U. S. Atomic Energy Commission.

References

- ALDRED, A. T. (1962). Trans. Amer. Inst. Min. (metall) Engrs., 224, 1082.
- BAENZIGER, N. C. & MORIARTY, J. L., Jr. (1961). Acta Cryst. 14, 946.
- BEAUDRY, B. J. & DAANE, A. H. (1960). Trans. Amer. Inst. Min. (metall) Engrs. 218, 854.
- BELL, J. C. & AUSTIN, A. E. (No date). Battelle Indexing Charts for Diffraction Patterns of Tetragonal, Hexagonal and Orthorhombic Crystals. Columbus, Ohio: Battelle Memorial Institute.
- COMPTON, V. B. (1958). Acta Cryst. 11, 446.

GIESSEN, B. C. & GRANT, N. J. (1964). Acta Cryst. 17, 615. KENDALL, E. G., HAYS, C. & SWIFT, R. E. (1961). Trans.

- Amer. Inst. Min. (metall) Engrs. 221, 445.
- MUELLER, M. H. & HEATON, L. (1961). Argonne National Laboratory, ANL-6176.
- NEVITT, M. V. (1963). Electronic Structure and Alloy Chemistry of the Transition Elements. P. A. Beck, Editor. New York: Wiley.
- NISHIMURA, H. & HIRAMATSU, T. (1957). J. Japan Inst. Metals, 21, 469.
- Novy, V. F., VICKERY, R. C. & KLEBER, E. V. (1961). Trans. Amer. Inst. Min. (metall) Engrs, 221, 585.
- PEARSON, W. B. (1958). A Handbook of Lattice Spacings and Structures of Metals and Alloys. Oxford: Pergamon Press.
- SCHUBERT, K., FRANK, K., GOHLE, R., MALDONADO, A., MEISSNER, H. G., RAMA, A. & ROSSTEUTSCHER, W. (1963). Naturwissenschaften, 50, 41.

STEEPLE, H. (1952). Acta Cryst. 5, 247.

TINNEY, J. J. & ROSENZWEIG, A. (1961). Acta Cryst. 14, 69.

Acta Cryst. (1965). 18, 841

Elastische und thermoelastische Konstanten von K₂SO₄, Rb₂SO₄, Cs₂SO₄, (NH₄)₂SO₄, Tl₂SO₄ und K₂Mg₂(SO₄)₃

VON S. HAUSSÜHL

Kristallographisches Institut der Universität Freiburg i.Br., Deutschland

(Eingegangen am 25. Juni 1964)

The elastic behaviour of the K_2SO_4 isotypic crystal group confirms the general validity of rules about the influence of lattice dimensions and properties of constituents on elastic and thermoelastic constants. Such rules were obtained earlier on isotypic cubic crystal groups. The elastic properties of $K_2Mg_2(SO_4)_3$ are strongly correlated with those of K_2SO_4 .

Das Ziel der vorliegenden Untersuchung war es zu prüfen, ob die bisherigen Regeln über die Abhängigkeit elastischer und thermoelastischer Konstanten von den Eigenschaften der Bausteine in isotypen Kristallreihen auch bei Kristallen geringerer Symmetrie gelten. Die K₂SO₄-Gruppe weist in fast allen physikalischen Eigenschaften eine bemerkenswert geringe Anisotropie auf. Die Abhängigkeit der elastischen Eigenschaften von den Bausteinen wird daher nur unwesentlich vom Einfluss der Anisotropie verwischt, sodass hier die Möglichkeit zu einer direkten Anknüpfung an die Verhältnisse bei kubischen Kristallen besteht. Ein Vergleich des elastischen Verhaltens des kubisch kristallisierenden $K_2Mg_2(SO_4)_3$ mit K_2SO_4 wurde durch die freundliche Überlassung eines natürlichen Langbeinit-Kristalls durch Herrn Prof. Zemann, Göttingen, möglich, dem auch an dieser Stelle sehr herzlich dafür gedankt sei.

Herstellung der Kristalle

Alle Kristalle mit Ausnahme von $K_2Mg_2(SO_4)_3$ wurden aus wässrigen Lösungen durch Senken der Temperatur bzw. langsames Eindunsten des Lösungsmittels bei etwa 50°C gewonnen. Bei Tl₂SO₄ konnte das Wachstumsvermögen durch Zusatz von Schwefelsäure wesentlich verbessert werden. Die wasserklaren Kristalle erreichten Abmessungen von mehreren cm in allen Dimensionen. Es wurde folgende Rangfolge glatter Flächen (Aufstellnng nach Groth, 1908) beobachtet:

K_2SO_4 :	$\{111\}, \{011\}, \{021\}, \{110\}, \{112\}, \{130\}, \\ \{100\}, \{001\}, \{010\}.$
Rb_2SO_4 :	$\{111\}, \{021\}, \{010\}, \{011\}, \{112\}, \{001\}, \{100\}, \{130\}.$
Cs_2SO_4 :	$\{010\}, \{001\}, \{111\}, \{110\}, \{021\}, \{011\}.$
(NH ₄) ₂ SO ₄ :	{011}, {110}, {111}, {010}, {130}, {021}, {001}, {100}.
Tl ₂ SO ₄ :	$\{010\}, \{110\}, \{111\}, \{011\}, \{021\}, \{001\}, \{102\}, \{012\}.$

Kugelwachstumsversuche an K_2SO_4 ergaben nur geringfügige Änderungen gegenüber dem Wachstum grosser Kristalle (v. Engelhardt, Haussühl & Zinnow, 1962).

Messungen

Bei den rhombischen Sulfaten wurden die elastischen Konstanten aus den Ausbreitungsgeschwindigkeiten elastischer Wellen mit Hilfe des verbesserten Schaefer-Bergmann-Verfahrens (bei 15 MHz) in den rhombischen Hauptrichtungen [100], [010], [001] und in deren Winkelhalbierenden gemessen. Die Werte für 20°C sind in Tabelle 1 aufgeführt. Die Bezeichnung entspricht der Aufstellung von Groth (1908). Die thermoelastischen Konstanten für 0°C wurden aus der Verschiebung von Eigenfrequenzen dicker Platten mit der